Nearest-neighbor entropy estimators with weak metrics
نویسندگان
چکیده
A problem of improving the accuracy of nonparametric entropy estimation for a stationary ergodic process is considered. New weak metrics are introduced and relations between metrics, measures, and entropy are discussed. Based on weak metrics, a new nearest-neighbor entropy estimator is constructed and has a parameter with which the estimator is optimized to reduce its bias. It is shown that estimator’s variance is upper-bounded by a nearly optimal Cramér-Rao lower bound.
منابع مشابه
Asymptotic Behaviors of Nearest Neighbor Kernel Density Estimator in Left-truncated Data
Kernel density estimators are the basic tools for density estimation in non-parametric statistics. The k-nearest neighbor kernel estimators represent a special form of kernel density estimators, in which the bandwidth is varied depending on the location of the sample points. In this paper, we initially introduce the k-nearest neighbor kernel density estimator in the random left-truncatio...
متن کاملk-Nearest Neighbor Based Consistent Entropy Estimation for Hyperspherical Distributions
A consistent entropy estimator for hyperspherical data is proposed based on the k-nearest neighbor (knn) approach. The asymptotic unbiasedness and consistency of the estimator are proved. Moreover, cross entropy and Kullback-Leibler (KL) divergence estimators are also discussed. Simulation studies are conducted to assess the performance of the estimators for models including uniform and von Mis...
متن کاملEFFECT OF THE NEXT-NEAREST NEIGHBOR INTERACTION ON THE ORDER-DISORDER PHASE TRANSITION
In this work, one and two-dimensional lattices are studied theoretically by a statistical mechanical approach. The nearest and next-nearest neighbor interactions are both taken into account, and the approximate thermodynamic properties of the lattices are calculated. The results of our calculations show that: (1) even though the next-nearest neighbor interaction may have an insignificant ef...
متن کاملkn-Nearest Neighbor Estimators of Entropy
For estimating the entropy of an absolutely continuous multivariate distribution, we propose nonparametric estimators based on the Euclidean distances between the n sample points and their kn-nearest neighbors, where {kn : n = 1, 2, . . .} is a sequence of positive integers varying with n. The proposed estimators are shown to be asymptotically unbiased and consistent.
متن کاملEstimation of Density using Plotless Density Estimator Criteria in Arasbaran Forest
Sampling methods have a theoretical basis and should be operational in different forests; therefore selecting an appropriate sampling method is effective for accurate estimation of forest characteristics. The purpose of this study was to estimate the stand density (number per hectare) in Arasbaran forest using a variety of the plotless density estimators of the nearest neighbors sampling me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Adv. in Math. of Comm.
دوره 8 شماره
صفحات -
تاریخ انتشار 2014